

Regional Workshop on Metrology and Technological Challenges of Climate Science and Renewable Energy 2014

Ethanol, Electronic Management and Flex Fuel Vehicles: Environmental Benefits and the Need of Improvements on Emission Measurements and Test Procedures

Gabriel Murgel Branco Fábio Cardinale Branco Alfred Szwarc

Milestones of Ethanol Use and Emission Control

- 1. 1980 First ethanol engines: improving efficiency and reducing CO and HC emission;
 - Non controlled carbureted engines: lean mixtures, lowering CO and HC (- 40%);
 - Materials development: corrosion and polymers resistant to ethanol;
 - Reduction of ethanol production waste;
 - Improvement of sugar cane production and biotechnology;
- 2. 1986 Emission standards were established for all vehicles PROCONVE;
 - similar std. for both gasoline and ethanol engines further emission reduction;
 - 1997 3rd phase Otto cycle vehicles target: electronic management and more than 90% emission reduction, including aldehydes;
- 3. 2000 4th phase Diesel HDV target: EURO II std. and ~ 70% emission reduction;
- 4. 2003 Start of motorcycle emission program PROMOT
- 5. 2004 enhanced electronic engine management and viable Otto flex fuel vehicles and EURO III std. for diesel HDV;
- 6. 2009/10 limits more stringent and introduction of OBD-II;
- 7. 2012 EURO V std. for Diesel HDV;
- 8. Next steps: organic emission control based on ozone formation potential enhanced evaporative emission control

Ethanol Pros and Cons

- 1. Renewable CO₂ reduces GHG significantly;
- 2. Reduced evaporative emissions and photochemical reactivity;
- 3. Lower energy content compensated by higher compression ratio and spark advance control reduced differences in fuel consumption to 20% when compared to gasoline;
- 4. Corrosion problems solved by new materials and reduced electric conductivity of fuel;
- 5. High aldehyde emissions reduced by 3-way catalists;
- 6. Fuel injection improved cold start, but still using gasoline or producing high ethanol emission in the first minutes of driving cycle;
- 7. Heated injectors reduced unburned ethanol emission during cold start, recently;
- 8. New polymers solved plastic and rubber parts deterioration;
- 9. Liquid waste of ethanol production was incorporated in agricultural process and environmental problems became eliminated;
- 10. Significant energy generation with leaves and stems reduces environmental impacts.

General I&M Results of CNG vehicles

$$\frac{(CO+CO_2)_{Liq.Fuel}}{(CO+CO_2)_{CNG}} = \frac{15}{12} = R$$

Target values: 1,2 < R < 1,3

Engine conversion looses emission control performance

Electronic Management: solution and challenge

- 1. Powerful hardware and softwares control all engine parameters at every second;
- 2. They allow to define emission control strategies, tailor made from the real time statistics, of any vehicle parameter;
- 3. Parameters statistics in real time allows to adapt engine to:
 - Ambient conditions, temperature and atmospheric pressure;
 - Load, speed and fuel characteristics variations;
 - Customer driving behaviour
 - BUT IT MAY ALSO ADJUST for driving cycle characteristics, eventually reducing <u>real driving representativeness</u> of certification test procedures
- 4. On board diagnosis OBD detects engine failures and records maintenance indicator parameters;
 - Complement and facilitates annual inspection;
 - Allows real time reading of any engine parameter and recording against time and distance traveled.

Statistical Behaviour and Real Driving

Example: similar behaviour for different driving conditions might be checked in driving cycle

Statistical Behaviour and Real Driving

Example: different behaviours for different fuels may reveal biased strategies

KEY - calibration parameters statistics may be used to validate driving cycle representativeness of real driving.

para simular condições mais comuns de utilização. O consumo percebido pelo motorista poderá variar para mais ou para menos, dependendo das condições de uso. Para saber por que, consulte www.inmetro.gov.br e www.conpet.gov.br

Instruções a recomendações de uso, leia o Manual do Proprietánio

Test procedures inconsistencies

See also http://en.wikipedia.org/wiki/Fuel economy in automobiles

Inspection and Maintenance procedures

- 1. Simple tests are still efficient for modern cars;
- 2. Enhanced test procedures may be required ONLY after 2nd reinspecion for tampering control;
- 3. OBD checks might be included to complement emission inspection:
 - Failures diagnosis report;
 - Readiness for inspection;
 - Measurement of RPM; catalyst, coolant and oil temperatures, etc.;
- 4. Remote sensing procedures to be adopted for emission measurement, monitoring and auditing;
- 5. Statistical routines to be established for I&M results interpretation:
 - Environmental benefits estimation;
 - Process auditing;
 - Feedback to Environmental Agency and manufacturers;
- 6. Social communication Program is a key to I&M success.

I&M Averages by Technology Level

- FAILED vehicles show emissions many times higher than APPROVED ones;
- Vehicles in the LAST REINSPECTION show similar averages as the APPROVED ones.

Estimation of Environmental Benefit using two emission inventories for each calendar year:

- 1. INICIAL inventory: average of Aproved + failed
- 2. FINAL inventory: average of Aproved + last reinspection

I&M and Type Approval Statistics

millions of cheap measurements with low test representativeness (idle/free accel.)

dozens of expensive measurements with high test representativeness (driving cycles)

Note: Demonstrated in the gasoline Otto cycle CO emission, because this is the most comprehensive fleet

- Regression lines of averages obtained in I&M inspections show very similar shapes of certification data measured in standard dynamometer driving cycles;
- Correlations of these lines show agreement betwen certificated emissions in g/km and in-use normal vehicles, and tampered vehicles as well;
- These correlations allow great improvement in inventory estimations.

Progress of CO levels in the atmosphere

Carbon monoxide is the pollutant most related to vehicle traffic because:

- it is by far the major source (95% comes from vehicles, mainly Otto cycle in Brazil)
- It is monitored by 8 hours moving average, thus sensitive to traffic variations

Therefore CO is the best indicator to confirm the presented calculations

No more violations of CO AQS

ENVIRONMENTALITY Tecnologia com Conceitos Ambientais

CONCLUSIONS

- Ethanol Program helped reducing emissions, especially CO₂ (renewable);
- Only technology improvements and stringent emission standards may assure large emission reductions;
- Engine conversions to alternative fuels loose technological quality;
- Alternative fuels and technologies need OEM development and support;
- Testing procedures in standard driving cycles requires further improvements for engines with enhanced electronic management:
 - key calibration parameters monitoring and
 - comparing to their real world statistics;
- Fuel consumption and emissions might be determined under the same simulation conditions and vehicle versions to improve consistency;
- Inspection and Maintenance Programs must be implemented and complemented with OBD and Remote Sensing resources, and including statistical routines for evaluation and feedback to Type Approval certification;
- Air quality is improving, but all Programs might be harmonized for better results.

Muchas Gracias!

Thank you!

gabriel.tcl@uol.com.br

Phone: 55 11 5561-3025